This is a question with answer to an old AMATYC test problem.

Question Find the value of the expression

\[x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \ldots}}} } \]

Answer. Since squaring \(\sqrt{z} \) gives \(z \), when we square \(x \) we just remove the outside square root sign. So

\[x^2 = 2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \ldots}}} } \]

That is, \(x^2 = 2 + x \), since the complicated expression with square root signs is \(x \). Thus we look for solutions to the quadratic equation

\[x^2 - x - 2 = 0 . \]

This factors: we have

\[(x - 2)(x + 1) = 0 \]

so either \(x = 2 \) or \(x = -1 \) — but the second is impossible, because \(x \) is a square root; thus \(x = 2 \).

Sam Needham ©2002