1. Define f by $f(x) = \lfloor \log_2 x \rfloor$.
 a) What is the domain of f?
 b) Is f 1-1?
 c) Is f onto the integers?
 d) What is the range of f?
 e) Does f have an inverse? If so, find f^{-1}.
 f) Draw the graph of f.

2. $f(x) = \log_2 \left(1 + \frac{1}{x} \right)$
 a) Prove $f(x)$ is decreasing from the definition of decreasing functions.
 b) What is the domain of f?
 c) Find the range of f. Is f onto $\mathbb{R} - \{0\}$?
 d) Find $O(f(x))$. (Best Big Oh)
 e) Prove $f(x)$ is 1-1.

3. Solve the recurrence relation
 $$a_k - 2 + 3a_{k-1} + 3a_k = 0 \quad k \geq 2$$
 $$a_0 = 0$$
 $$a_1 = 2$$

4. Let m_n be the maximum number of comparisons for a merge sort algorithm with an input of n elements.
 a) Write the recurrence relation for m_n.
 b) Prove by induction: $m_n \leq 2n \log_2 n \quad n \geq 1$
 c) Derive the order of the merge sort algorithm from this result.

5. Input an array of 8 elements: 5, 6, 4, 7, 2, 9, 3, 1.
 a) Sort by insertion sort. Make a table to show the results at each stage. Count the number of comparisons.
 b) Repeat for merge sort.
 c) Next search for the element 2 in your sorted list. As before, present a table and count comparisons. Analyze using sequential search and then repeat for binary search.
 d) List the total number of comparisons for the 4 combinations:
 Insertion sort, binary search.
 Insertion sort, sequential search.
 Merge sort, binary search.
 Merge sort, sequential search.
 e) Derive the order for each of the 4 combinations of algorithms. You may use the orders for the individual algorithms that were given in class or the text. (e.g., sequential search is $O(n)$.)

Please sign:

This exam is entirely my own work. I did not consult with anyone else for help with the exam.