Exam 4 Calculus 2 M193-1240 Prof. L. A. Month

(05%) 1. Find the second partial sum of the infinite series. Find the sum of the infinite series.

\[\sum_{n=0}^{\infty} \frac{5}{2^n} - \frac{1}{3^n} \]

(05%) 2. Use the integral test to determine if the series converges or diverges. Be sure to check that the conditions of the integral test are satisfied.

\[\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \]

(30%) 3. Use any method to determine if the series converges or diverges. Give reasons.

\[\sum \frac{n^2 + 2n + 5}{n^4 - 3n^2 + 5} \]
\[\sum \frac{(\ln n)^2}{n^{3/2}} \]
\[\sum \frac{(2n)!}{n! \ n!} \]
\[\sum \frac{n! \ n! \sqrt{n}}{(2n)!} \]
\[\sum \frac{2^{n^2}}{n!} \]
\[\sum \frac{3^n}{4n} \]

(10%) 4. Determine if the alternating series converges or diverges.

\[\sum \frac{(-1)^{n+1}}{\sqrt{n}} \]
\[\sum \frac{(-1)^{n+1}3\sqrt{n} + 1}{\sqrt{n} + 1} \]

(10%) 5. For each series determine if it converges absolutely or converges conditionally or diverges.

\[\sum (-1)^n \frac{1 + n}{n^2} \]
\[\sum \frac{(-100)^n}{n!} \]
6. Bound the magnitude of the error in using the sum of the first 4 terms to approximate the sum of the entire series. Is the estimate an underestimate or an overestimate? Explain.

\[\sum_{n=1}^{\infty} \frac{(-1)^n}{10^n} \]

7. Find the series radius and interval of convergence. For what values of \(x \) does the series converge absolutely? For what values of \(x \) if any does the series converge conditionally?

\[\sum_{n=1}^{\infty} \frac{4^n x^{2n}}{n} \]
\[\sum_{n=1}^{\infty} \frac{(-1)^n n! (x - 2)^n}{5^n} \]
\[\sum_{n=1}^{\infty} \frac{3^n x^n}{n!} \]

8. Find the Taylor series of \(f(x) = \ln (2 + 5x) \) about \(x = 1 \) in closed form.

9. Sum the series. Leave your answer in exact form.

\[1 + 2 \left(\frac{\pi}{4} \right) + 3 \left(\frac{\pi}{4} \right)^2 + 4 \left(\frac{\pi}{4} \right)^3 + \cdots \]

10. Write the first four terms in the binomial series expansion of \(\sqrt{5 - 2x} \).