Calculus 2 TAYLOR AND MACLAURIN SERIES

On its interval of convergence the sum of the given power series $\sum_{n=0}^{\infty} c_n(x - a)^n$ is a continuous function $f(x)$ with derivatives of all orders. What about the other way around? Given a function $f(x)$ with derivatives of all orders on an interval I can we express $f(x)$ as a sum of a power series on I? If yes, what are the coefficients? We start by assuming $f(x)$ to be the sum of a power series with positive radius of convergence.

$$f(x) = \sum_{n=0}^{\infty} c_n(x - a)^n = c_0 + c_1(x - a) + c_2(x - a)^2 + \cdots + c_n(x - a)^n + \cdots$$

Recall that a power series for $f(x)$ can be differentiated term-by-term and the resulting sum converges to $f'(x)$ within the interval of convergence. By repeated term-by-term differentiation within I

$$f'(x) = 1c_1 + 2c_2(x - a) + 3c_3(x - a)^2 + 4c_4(x - a)^3 \cdots n c_n(x - a)^{n-1} + \cdots$$
$$f''(x) = 2 \cdot 1c_2 + 3 \cdot 2c_3(x - a) + 4 \cdot 3c_4(x - a)^2 + \cdots + n(n - 1)c_n(x - a)^{n-2} + \cdots$$
$$f'''(x) = 3 \cdot 2 \cdot 1c_3 + 4 \cdot 3 \cdot 2c_4(x - a) + \cdots + n(n - 1)(n - 2)c_n(x - a)^{n-3} + \cdots$$
$$\vdots$$
$$f^{(n)}(x) = n! \cdot c_n + \text{sum of terms with factor } (x - a)$$

since these equations hold for $x = a$, we have,

$$f'(a) = 1c_1$$
$$f''(a) = 2 \cdot 1c_2$$
$$f'''(a) = 3 \cdot 2 \cdot 1c_3$$
$$\vdots$$
$$f^{(n)}(a) = n! \cdot c_n$$

We have just shown that if a power series $\sum_{n=0}^{\infty} c_n(x - a)^n$ exists that converges to the values of $f(x)$ on I then the power series is unique and its coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}$$

The power series for $f(x)$ is the unique series

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \cdots$$

The question remains: Given an $f(x)$ infinitely differentiable on I, if we generate the power series on the RHS, does it converge? Does it converge to $f(x)$ on I? We call the series on the RHS the Taylor Series of f about $x = a$. If $a = 0$ the Taylor Series is called the MacLaurin Series

Definition: Taylor Series and MacLaurin Series

Let f be a function with derivatives of all orders in some interval containing a inside the interval. The Taylor Series of $f(x)$ about $x = a$ (generated by $f(x)$ at $x = a$) (representation of $f(x)$ about $x = a$) is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x - a)^k = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \cdots$$

The MacLaurin Series is the Taylor series of $f(x)$ about $x = 0$

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}x^k = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots + \frac{f^{(n)}(0)}{n!}x^n + \cdots$$
Recall that the linearization of \(f(x) \) at \(x = a \) is the polynomial \(P_1(x) = f(a) + f'(a)(x - a) \) (equation of tangent line). This is the best approximation of \(f(x) \) in the neighborhood of \(x = a \). Similarly if \(f(x) \) has higher order derivatives in the neighborhood of \(x = a \) then it has higher order polynomial approximations. These polynomials which match the value of \(f \) and its higher order derivatives at \(x = a \) are called the Taylor polynomials of \(f \). It turns out the higher order Taylor polynomials are the best polynomial approximations of their respective degrees.

Definition: Taylor polynomial of order \(n \)

If \(f(x) \) has derivatives of all orders up to \(n \) in some interval \(I \) containing \(a \) then the polynomial

\[
P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!} (x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!} (x - a)^n = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k
\]

is called the \(n^{th} \) order Taylor polynomial for \(f(x) \) about \(x = a \).

If the \(n^{th} \) order derivative of \(f(x) \) is zero then the \(n^{th} \) order Taylor polynomial, \(P_n(x) \), is not of degree \(n \). For instance the first order Taylor polynomial of \(\cos x \) about \(x = 0 \) has degree zero not 1 because the first derivative of \(\cos x \) is zero at \(x = 0 \). \(P_0(x) = 1 \quad P_1(x) = 1 + 0x = 1 \).

The Taylor Series is a power series about \(x = a \). Therefore there are only three possibilities for the \(x \) interval of convergence of the series.

1. The series converges absolutely for all \(x \). The radius of convergence is \(\infty \).
2. The series converges absolutely only for \(x = a \). The radius of convergence is zero.
3. The series converges absolutely in an interval about \(x = a \), \((a - R, a + R)\) and diverges outside the interval. The endpoints need to be tested separately. \(R \) is called the radius of convergence. \(0 < R < \infty \)

For any given Taylor Series for \(f(x) \) we need to determine the following:

1. What is the interval of convergence for \(x \)? We use the ratio test.
2. Does the series converge to \(f(x) \)?

If \(a = 0 \) the Taylor polynomial is called the MacLaurin polynomial.

Example: \(f(x) = e^x \). Find the \(3^{rd} \) order MacLaurin polynomial, \(P_3(x) \). This is a polynomial of degree \(\leq 3 \) for \(e^x \) about \(x = 0 \) which matches the value of \(e^x \) and the value of the first and second and third derivatives of \(e^x \) at \(x = 0 \) with the values of the polynomial at \(x = 0 \).

\[
P_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3
\]

\[
f(0) = e^0 = 1, f'(0) = x^0 = 1, f''(0) = e^0 = 1, f'''(0) = e^0 = 1
\]

\[
P_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}
\]
\(P_3(x) \) is the only polynomial of degree \(\leq 3 \) with error, \(E(x) = e^x - P_3(x) \), zero at \(x = 0 \) and error negligible compared to \(x^3 \). \(\lim_{x \to 0} \frac{E(x)}{x^3} = 0 \).

The Taylor polynomial \(P_n(x) \) for \(f(x) \) is the only polynomial of degree \(\leq n \) with error both zero at \(x = a \) and negligible compared to \((x-a)^n \).

Error \(E(x) = f(x) - P_n(x) \)

\[
\lim_{x \to a} \frac{E(x)}{(x-a)^n} = 0
\]

Find the MacLaurin series of \(e^x \)

\[
f(0) = f'(0) = f''(0) = \cdots f^{(n)}(0) = 1. \text{ The MacLaurin series of } e^x \text{ is } 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{x^n}{n!}
\]

Does the series converge? \(\lim_{n \to \infty} \frac{x^{n+1}n!}{(n+1)x^n} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1 \). The series converges absolutely for all \(x \) by the ratio test. The question remains, does the Taylor series converge to \(f(x) \)?

Example: Find the Taylor series for \(\sin x \) about \(x = 0 \)

The Taylor series for \(f(x) \) about \(x = 0 \) is \(\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \)

\[
f(0) = \sin x \bigg|_{x=0} = 0
f'(0) = \cos x \bigg|_{x=0} = 1
f''(0) = -\sin x \bigg|_{x=0} = 0
f'''(0) = -\cos x \bigg|_{x=0} = -1
f^{(4)}(0) = \sin x \bigg|_{x=0} = 0
f^{(5)}(0) = \cos x \bigg|_{x=0} = 1
\]

The Taylor series for \(\sin x \) about \(x = 0 \) is

\[0 + 1x + \frac{0x^2}{2!} - \frac{1x^3}{3!} + \frac{0x^4}{4!} + \frac{1x^5}{5!} + \frac{0x^6}{6!} - \frac{1x^7}{7!} + \cdots = \]

\[x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \]. Verify this series converges absolutely for all \(x \).
Example: Find the MacLaurin series of $\cos x$

The Taylor series for $f(x)$ about $x = 0$ is $\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^n}{n!}$

$f(0) = \cos x_{x=0} = 1$
$f'(0) = -\sin x_{x=0} = 0$
$f''(0) = -\cos x_{x=0} = -1$
$f'''(0) = \sin x_{x=0} = 0$
$f^{(4)}(0) = \cos x_{x=0} = 1$
$f^{(5)}(0) = -\sin x_{x=0} = 0$

The Taylor series for $\cos x$ about $x = 0$ is $1 + 0x - \frac{1x^2}{2!} + \frac{0x^3}{3!} + \frac{1x^4}{4!} - \frac{0x^5}{5!} - \frac{1x^6}{6!} + \frac{0x^7}{7!} + \cdots = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$. Verify this series converges absolutely for all x.

Example: Find the Taylor series of $\sin 2x$ about $x = 0$

The Taylor series for $f(x)$ about $x = 0$ is $\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^n}{n!}$

$f(0) = \sin 2x_{x=0} = 0$
$f'(0) = 2 \cos 2x_{x=0} = 2$
$f''(0) = -2^2 \sin 2x_{x=0} = 0$
$f'''(0) = -2^3 \cos 2x_{x=0} = -2^3$
$f^{(4)}(0) = 2^4 \sin 2x_{x=0} = 0$
$f^{(5)}(0) = 2^5 \cos 2x_{x=0} = 2^5$

In order to recognize powers and factorials for formulas it is useful not to multiply out coefficients.

The Taylor series for $\sin 2x$ about $x = 0$ is $0 + 2x + \frac{0x^2}{2!} - \frac{2^2 x^3}{3!} + \frac{0x^4}{4!} + \frac{2^4 x^5}{5!} + \frac{0x^6}{6!} - \frac{2^7 x^7}{7!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{(2n+1)!}$

Note that we could have find the Taylor Series directly by substitution.

Example: Find the Taylor series for $\ln x$ about $x = 1$.

The Taylor Series of $f(x)$ about $x = 1$ is $\sum_{n=0}^{\infty} f^{(n)}(1) \frac{(x-1)^n}{n!}$

$f(1) = \ln x_{x=1} = 0$
$f'(1) = \frac{1}{x_{x=1}} = 1$
Keep going until you recognize a pattern and can generate a formula for the nth derivative of f with respect to x evaluated at $x = 1$, $f^{(n)}(1) = (-1)^{n+1} (n-1)! \ n \geq 1$

The Taylor series for $\ln x$ about $x = 1$ is

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n-1)!}{n!} (x-1)^n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n} .
$$

This series converges absolutely for $|x-1| < 1$, diverges at $x = 1$ and converges conditionally at $x = 2$.

Example: Find the Taylor series of $f(x) = x^3 - 3x^2 + 2x + 1$ about $x = 0$

$$
f(0) = 1 \\
f'(0) = 3x^2 - 6x + 2, \ x=0 = 2 \\
f''(0) = 6x - 6, \ x=0 = -6 \\
f'''(0) = 6 \\
f^{(n)}(0) = 0 \ \ \ n \geq 4
$$

The Taylor series of $f(x)$ is $1 + 2x - \frac{6x^2}{2!} + \frac{-6x^3}{3!} = 1 + 2x - 3x^2 + x^3$ of course!!

If a power series of x converges to $f(x)$ on some open interval about $x = 0$ then the power series is the Taylor series.

You will need to memorize the following Taylor series about $x = 0$ (MacLaurin series). The interval of convergence is also given.

$$
e^x \quad 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad (-\infty, \infty)$$

$$\sin x \quad x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \quad (-\infty, \infty)$$

$$\cos x \quad 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \quad (-\infty, \infty)$$

$$\ln(1+x) \quad x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} \quad (-1, 1]$$

$$\frac{1}{1+x} \quad 1 - x + x^2 - x^3 + x^4 - \cdots = \sum_{n=0}^{\infty} (-1)^n x^n \quad (-1, 1)$$

For homework problems see http://voyager.dvc.edu/~lmonth/Calc2/Hw4Series.pdf